Population structure using mtDNA

- Southwest Fisheries Science Center
 - Greg O'Corry Crowe
 - Barbara Taylor
 - Marc Basterretche
- · joint research: SWFSC, NMML, TAMU
- study 2001-107

Study design to estimate dispersal rates

 Level of genetic differentiation between rookeries is expected to be low even for demographically trivial dispersal rates because abundance was high

Increase precision by

- increasing the length of mtDNA sequence examined
- increasing sample size to achieve high statistical power

Steller Sea lion, Eumetopias jubatus, mtDNA Sequencing

Increasing sequence length increases power

Sample size required >50/rookery

514 base pairs mtDNA

Hypothesis testing results using Akutan n = 65 Ugamak n = 77

° x² p-value

-238 base pairs p = 0.16

-514 base pairs p = 0.02

Case specific simulation approach to estimating dispersal

d = 0.0005 is consistent with about 6 females (out of 27,000) moving between these two rookeries

Preliminary conclusions

- there is population structure between adjacent rookeries that is statisically significant
- dispersal estimates are demographically trivial and therefore important for risk assessment
- dispersal estimates at this level are not consistent with DPS status

Recommendations

- extending the length of sequence used is critical for detecting population structure at the demographic level
- at least 50 samples should be gathered from each rookery to be able to estimate dispersal rates